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A B S T R A C T

A frequency domain method is dcvclopcd  for statistical rnultivariable  plant set estima-
tion. The estimation of a plant “set” rather than a point estimate is required to support
many methods of moclern  robust control design. The approach here is based on using
multisinusoidal  input designs, and acquiring multivariablc  clata from a scqucncc  of SIMO
cxpcrimcnts.  Results for the multivariablc  case extend earlier results developed for the
S1S0 case. The data is prcproccsscd  using I)FT and signal processing methods, and cer-
tain key statistical properties of the cstinmtors arc presented in the multivariablc  case.
These properties lead to a prccisc  characterization of the plant set to a specified statistical
confidcncc,  e.g., (1 — a) . 100Yo.  The significance of this result is that if a robust controller
is designed to provide some spccificd  level of stability or performance for all plants lying in
the additive uncertainty se-t, then with probability 1 – a the controller will work as planned
when applied to the true system.

An advantage of statistical uncertainty characterizations is that they are potentially lCSS
conservative than dctcrrninistic uncertainty characterizations. For example, the notion
that noise disturbances tend to “average out” over time is missing from deterministic
bounded noise treatrncnts.

1. INTRODUCTION

Consider the multivariable  system with output noise, given by,

y(k) = P(z-l)u(k)  + v(k) (1)

where T(z–]  ) is the q-input, r-output multivariable LTI plant and v G R“ is an output
vector disturbance. It is desired to idcnt ify this system in the following form,

P(z-’) ~ PO(Z-l) + AA (2)

where I’” (z–l ) is a nominal estimate of the true plant T(.z-l ), and AA is the additive
uncertainty defined as AA = T — J’”. Since the true plant is not known, it is desired to
represent the additive uncertainty in the form

AA == AWA (3)

1



.

such that A is norm bounded (i. e., such that 11A I \@ < 1 ) ancl such that WA is a nlinimum-
phase  trallsfcr  function weighting matrix. The filtC!I’  I1latliX WA is hCXl typidly hlCO~pO-
ratccl  into the control clcsign, to ensure robustness properties over the aclclitivc  uncertainty
Set.

The goal of this paper is to identify a nominal plant estimate 1’0, and a weighting filter WA

such that the relation 7 = PO + AWA holds (for some 11A 11~ < 1) to a spccificd  statistical
conficlcncc 1 — a specified by the clcsigncr. It is then a separate problem in modern robust
control synthesis to find a compensator C that has clcsirablc  stability and pcrfornmncc
properties for all plants in the uncertainty set defined by P“ and WA [1][7].

The rationale is that if C can ensure some level of performance for all plants in the additive
uncertainty set defined by WA, then the controller  w~ll WOr~ as designed when imPl~mcntcd
on the real plant  with probability 1 – a. This approach effects a marriage between the
hard uncertainty bounds used in modern llm robust control designs, and the soft bounds
obtainable using statistical methods.

2. A-PRIORI INFORMATION

The estimation of a plant set requires the specification of certain a-priori information. The
assumptions are given explicitly in this section.

First, the following definition will be nccdcd.

Definition 1. A MIMO transfer function G(z-l ) is said to be in D(A4, p) if the impulse re-
sponse matrix sequence {g(kl”)}~=o defined  b the Z-trarlsform  relation ~~=o g(kT)~–~  =
G(z–l ) satisfies,

6(g(kT))  s Mpk

forsoxllcm>~>Oalldl>pzO. ■

The main usefulness of Definition 1 is due to the next lemma.

Lemma 1 Let G(z–] ) ~ D(&f, p), Then the derivative of G on the unit circle can bc
uniformly bounded from above as follows,

,,
dG(~w’ ) ) < ;:*

ti(—

Proofi  sce [6]. ■

The bound in Lemma 1 insures a certain smoothness in G and allows one to overbound
errors incurred interpolating frequency data in-bet ween grid points.

Assumption 1. The true plant ?(z-l ) is a stable unknown linear time-invariant (LTI)
g-input r-output multivariable  transfer function assumed to be in D(A4, p), where M and
p are assumed known. ■

The experiment design is now briefly described. Consider the periodic input excitation
design into the n] th actuator, composed of a harmonically relatccl  sum of sinusoicls,

ll~(k,n~)  = S /~;])COS(U~kT  + ~~(n])) (4)
i= 1
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WllCS~ Ui = 2~i/T\,, 2!;,  = N,T, ns < N./2.  ‘llc power is normalized as,

where the rclat ivc power in each component { az (n 1 ) > 0, i = 1 , ., .n~ } is assumccl spcci-
ficd. In orclcr  to minimize peaking in time domain the sinusoids arc phased according to
Schrocdcr  [20] as,

$f,(?ll  ) = 2~ fi~O!j(?2~) (6)
j=]

(Here, a slightly modified form of the Schrocclcr  phase is used in (6), as derived in Young
and Patton [22] ), More recent expressions which usc the Schroeder design as a starting
point for further reducing the crest fiictor of the multisinusoid signal (4) can also bc used
[II].  The Schrocdcr  phasing (6) is used here mainly for ill~~,le~ne~~tatio~~  convenience. ‘I’he
actual choice of phase does not effect the analysis or change any of the main results herein.

Assumption 2 Data for the multivariable  case is assumed to bc taken by performing g
separate single-input multiple-output ( SIMO)  experiments, using a rnultisinusoidal  exci-
tation of the form (4) with the full number of sinusoids ns = N9/2 for each experiment.
■

Assumption 3 The output disturbance v(k)  E Rr can bc represented by v(k) =
W’(Z–l  )d(k) where d(k)  ~ R“ is a white zero-lncan Gaussian vector noise sequcncc  nor-
malized such that E[d(j)d7’(k)]  = bj~ . 1; lV(.z-l ) is a diagonal ma-trix  of filters

{
W’(,Z-’)  = Diag  IV(Z-l,l),..., W(z-l, r)} (7)

where W(z–] , n2) is a minimum phase (stable and stably invertible) transfer function,
?22 = I,... )r. ■

Assumption 4 Data from each SIMO experiment is taken while the system is in periodic
steady-state, B

Assumption 5: The input period N.T of the multisinusoidal design (4) is long compared
to the time constants of noise filter W and its inverse W–l.

In this formulation, the designer has the freedom to choose the frequency shaping {~i(nl )}
and the number of periods of data collected rn(nl ) in each SIMO experiment.

3. PREVIOUS RESULTS

Various methods of plant set estimation have been given in the literature. The wwious
approaches can bc roughly divided depending upon whether they usc time-domain esti-
mation as in Kosut [14], Younce  and Rhors [21], Goodwin and Salgado [12], or frequency
domain estimation as in Lamaire ct. al. [16], Parker and Bitmcad  [17], Bayard [3], or De
Vries and Van den Hof [8][9].
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(ii)

(iii)
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(ii)

(iii)

Methods  within cac.h category generally cliffcr based on the types of inputs allowccl (e.g.,
sccxmd-order stationary, white noise, periodic, multisinusoiclal,  persistent exciting, etc.),
the types of c~uantitics being cstimatccl  (e.g., plant dynamics, noise PSD’s, unmodcllcd
dynamics), moclcl  ~>ara.l~~ctrizatiol~  (e. g., pole-zero moclcls,  FIR models, etc.), assumptions
on the noise (e.g., bounded noise, bounded noise DFT,  Gaussian noise, etc.), and the type
of a-priori information rcquirccl  (i.e., smoothness priors, open-loop damping,  model order,
relative dcgrcc,  etc.).

Related approaches which give hard bounds on the identified model error can also be found
in Hclmicki, Jacobson and Nett [13] and Gu and Khargonekar [10]. However, these rncthods
arc not directly comparable since they start by assuming frequency data is available in a
specific form (i .c. , with hard error bounds) and do not explicitly separate the error into
noise and unmodcllcd  dynamics.

A specific method for S1S0 plant set estimation using multisinusoicls  has been given in [3]
for the case of

Gaussian noise cl(k)

Data taken in steady-state

Noise shaping filter of form IV == a~(.z-l,  1) where filter hV(z–l, 1) is known, and o is a
scale factor which can bc known or unknown.

These results were generalized by De Vries and Van den Hof [9] as follows,

non-Gaussian noise

Data not necessarily taken in steady-state

The weighting filter w(.z-’ ) is completely unknown

Eliminating the need for a-priori knowledge of the noise coloring filter IV(z-’ ) is par-
ticularly useful in practice. The main cost of these improvements is that the expressions
obtained in [9] are only valid asymptotically  (valid as the input period NST  bccomcs  large).
However, exact expressions are difficult to obtain in the case where noise is estimated along
with unmodclled  dynamics, and asymptotic results of this t ypc may be unavoidable for
bridging the gap between theory and practice.

The present paper will extend the S1S0 results in [3] to the multivariablc  case. In this
extension, a philosophy will bc used similar to [9], in that a-priori knowledge of W’ will bc
avoided at the expense of obtaining only asymptotic results (i.e., valid as NST  becomes
large).

4. MIMO PLANT SET E S T I M A T I O N

An additive error AA(z-l  ) is used to characterize the mismatch between the true plant
T’(z-] ) and a nominal plant estimate P“(z-]  ), i.e.,

AA(z-])  = ‘P(z - ]) – I}”(z-l) (8)

It will be useful  to define an additive uww+zinty  set as the set of plants  ~A(~O,  ~A(U))
associated with a specified overbound ~A(ti) on the additive error, i.e.,
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This notion is cxtendccl  to the specification of a statistical  OVC~~OUII~ ~~- ‘(u) ill the  fol-
lowing clcfinition,

I]efinition 2 /j-m(u)  is said to bC an Ovcrhound on f~~e additive  uncertainty  wit~L statistical
confidence (1 – a) x 1.00% if,

■

The  significance of this definition is that l~-a characterizes (to statistical confidence (1 –
a) x 1007o)  a set in which the true plant T belongs. Hence, if a robust controller is
designed to provide some spccificd  lCVC1 of performance for all plants lying in the additive
uncertainty set ~A(~O, /j–a(LJ)),  then with probability  1 – ~ the controller will WOrk aS
planned when applied to the true system.

The calculation of a statistical ovcrbound  ~~-a from pointwise ovcrbounds  is given in the
next result.

Lemma 2

Given discrctc-tirne  plaxl$ 7(-z-]) E D(M, p), assume that noisy frequency domaiIl  data
{~(oi)}~, are available on a uniform grid 01~ the unit circle Wi = i~~, i = 1,..., N with
grid spacing A~ = ~i+l – wi ~ y. Assume that the accuracy of each data point can bc
characterized by the quantity e~ such that the event Ei,

is satisfied with at least probability 1 – K at each grid point  i. Hc~c,  the events  ~i i =
1 ,..., N may or may not be jointly statistically independent. Let S(P, w) be a linear spline
intcrpolant  to the data {~(~z)}~zl,  i.e. )

{

(W--wi) (f(~z+l)  – F(b)i))  for w E (~i,~i.i  11
s(F, Ld) = $(~i) + ~ (12)

F(W1  ) for w E [O, wI].

and let F’O(z-l  ) be any stable parametric model fit to the data. If Ij–a(w) is defined as,

J?p(w) = L’,(u) + 132(~) (13)

where,
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l?~(u) = 6-( S(F-, LJ) -- r“(w)) (15)

thc?t,  t~–~ i.~ an overbou,ncl  on the additive uncertainty with statistical confidence,

l–cl’=
{

(1 - K)N if E~, i == 1, ..., N arc inclcpcndent
l–KN otherwise

(16)

Proof: The result proved identically to Theorem 2.1 in 13ayard  [3], by replacing absolute
values [ . I of scalar cluantitics  with maximum singular values 6(”) of matrix quantities. ■

Intuitively, the overbound /j–a(u)  in (13) can bc thought of as the sum of three tcrnM:  a
curve fit error B2(ti); an estimation CTTOT at the grid points  ~i; aIld an intcvolat~on  CTTOT
between grid points D] (w) – ~i.

Values for M and p will bc assumed known a-priori (they may bc known from the physics
of the process, practical fxpcricncc, or can be found by impulse or step response experi-
ments). Systematic methods for finding multivariable data {~(~i)> ~i }Ll with the cIcsired
properties in Lemma 2 will bc the main focus of the remainder of this paper.

5. DATA ACQUISITION AND PROCESSING

Consider a single-channel input design u,(Ic, n] ) applied to the nl th actuator, with design
weights ~i(nl ), ?2] = 1, ..., q of the multisinusoidal form (4). The system is allowed to
reach periodic steady-state, at which time the plant response at the nzth sensor is denoted
as y~(~, n2, n1) for each sensor nz = 1, . . ..r. Consider breaking the data into windows
which arc precisely onc period long in length, and denote the output data from the lth
period as,

y:(k,  ?12, n1) = y.(k + (1– l)Ns,7~z,?t]) (17)

for k = O,..., N.–1 andl= 1,..., rn(t21 ). It is assumed that 772(?21 ) periods of output data
(i.e., y$(k, n2,nl),  1 = 1,..., rn(nl )), are collcctcd  at steady-state.

This process is repeated for q SIMO cxpcrimcnts  ?21 = 1,..., g, corresponding to a separate
experiment from each of the system’s q actuators. The frequency shaping {~i(nl )} of the
multisinusoidal  design (4) and number of periods rn(?21  ) of data collected, can be chosen
differently for each SIMO experiment. For notational convcnicnce,  the total number of
data windows acquired over azz experiments is defined by,

(18)

Under Assumptions 1-5 one can construct the following estimates apd statistical distribu-
tions [5],
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DFT Plant Estimator

Y(W2, ?22,111JC  ~1 ~ ~,..-,q;~(ui, ~2, ~~ ) = -–—----—U(L+, TI]) ‘ 712 = 1,...,  r (19)

T7(ui,nz,rzl)  =
{

;;<i~ ~j!~’) ‘e(wi)”z) “I) ‘o’ ‘i ‘r ‘N~-i e ‘S (20)
o otherwise

N.–l

Ye(~i, n2, nl) = ~ y~(k, n2) 721 )C–Jw’kl’ (21 CL)
k=o

N,–-l

U(LJi,’121)  = ~ us(~, ?2] )c-~Wikl’ (21.b)
k=o

It is noted that ~(tii, nz, nl ) is defined OX1lY at points of nOXMCrO  energy in t~lc inPut (i.c”~
for i such that ~i or WN~–i is in u,).

SIilIO-Data Estimates

l@(Wi, nzlnl)l’  =
x~!~’) ly(~i, 722, n]) -, ~(~i,n2, ?~I)12

N,(?n(nl ) – 1)

(27n(nl) -  2)l@(Wi, n21nl)12 ~ ~2(2m(7z1) _  Q,
————
lw’’(tii,?tz)l’

Cifi(nl)772(nl)iV~
–— s \.P(Wi, n2, n~) -  T(W2, n2,7~l)\2 ~ J’(2,2m(nl)  -  ‘2)

21@(Ldi,nzlnl)12

MIit10-Data  Estimates

X~l=~ ~jlf~’) lY(~i, n2, n]) - ~(wi,~2,nl)12
lt7(Wi, ?22)12 = ‘-

N, (771 – q)

(2fi -- 2g)l@(Wi, 722)12 ~ ~2(2m _ Zq)

lVV(Wi,  n2)12

al(nl)m(nl).N.
.  12(bJi,722,n~) -  P(Wi,722, n~)12  N F(2,2E3  -  29)

21@(~i,n’)\2

(22)

(23)

(24)

(25)

(26)

(27)

Here, X2(v) denotes a Chi-Squared  distribution with v degrcccs of freedom and Z’(vl, V2)
denotes a Fisher distribution with V1 and vz degrees of freedom, respectively.
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A distinction is made bctwecu SIMO-data  mtimatcs ancl MIMO-clata  estimates above.
The reason is that there is separate information concerning the noise filter lV from each
SIMO cxpcrimcnt.  For example, the noise coloring filter IV(z-l, nQ ) can bc cstimatccl by
monitoring the noise in sensor n2 in each of q separate SIMO cxpc~mcnts.  Hence, onc
can gcncratc  q separate estimates of lV(z-l , n2) (denoted above as lV(z-l , n2 Inl ); n] ==
1 , .Qq), or alternatively, combine all data sets into a single MIMO-data  estimate (denoted
as lV(.z-],  722)),

Clearly, MIMO-data  estimates (25) of the noise filter will bc more accurate than the
SIMO-data  estimates (22) since they usc more data (i.e. , note the double summation
in the numerator of (25)). However, the MIMO-data  plant error statistics (27) will bc
statistically dependent across each row of the transfer function, since they involve a common
noise filter  estimate @(z–l,  ??.2).  In contrast, plant  error statistics based on SIMO-data
(24) will remain independent across each row of the transfer function, since  SIMO data
is statistically independent from onc cxpcrimcnt  to the next. For combining probabilistic
events, statist ical independence is often preferred.

6. MULTIVARIA13L13  RESULTS

A statistical multivariable  plant set estimate can bc directly obtained from Lemma 2 if
one can find Ci such that the event,

is satisfied with at least probability 1 — K at each grid point i. Such values of ei will bc
clctcrmined in this section under Assumptions 1-5.

Consicler  the well known Frobcnious  norm bound cm the square of the maximum singular
value,

5(’P((.di)  –  F(WZ))2 < [[~(~i)  –  ‘(wi)l If (29)

where [ \..Yl  I ~ S tr{X7’X}l/2,  Using the SIMO-data  error statistics (24) each of the terms
in (30) can bc ovcrbounded  to probability 1 – ~ by,

where,

(32)

and Z’l –7(v1, V2 ) denotes the Yo(l  — ~) x 100 percentile for the Fisher distribution.

The events (31 ) are statistically independent for nl # n2 since,

1 ) The errors in each row of ~ are independent by the diagonal structure of noise W
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‘l?hc errors in ca,ch column of j arc inclcpcndcnt by the SIMO data acquisition procedure
and the usc of SIMO-data  estimates (24) in the calculation of the percentiles in (32).

Hence, from (30) and (31,) the event,

holcls  with probability,

(1 -K)= (1 - 7)9”’ (34)

as clcsircd,  Furthermore, under Assumption 5, the events -Ei i = 1,..., N in (33) arc
st artistically independent from one frequency to the next. Hcncc,  one can usc the results
of Lemma “2 to generate an additive uncertainty ovcrbound  1~– a (w) to confidence 1 – a
using the formula 1 – a = (1 – ~)~’.

Using the LPSOF algorithm [19] to overbouncl the nonparameirk additive error l~-a(w)
gives an additive uncertainty weighting filter  WA (Z–l  ) = WA(Z–]  ) . ~ in the form of a
parametric filter  ‘uJA times the identity matrix. The additive error is now in the desired
parametric form for use with control design software.

7. CONCLUSIONS

The present paper extends statistical plant estimation approaches to the multivariable
case. This approach produces a nominal plant estimate F’” and the additive uncertainty
weighting filter ~’VA . I, such that the true plant lies in the additive uncertainty set T =
p“ + VVAA to a prescribed statistical confidence %(1 – a) x 100. Hence, any controller
designed to be robust with respect to P“ and WA will work on the true systcm to the same
%(1 – a) x 100 statistical confidence.

The main device used here to effect the extension to the multivariable  case is to ovcrbound
the maximum singular value of a matrix X by its Frobcnious  norm [IX I If = Tr{X7’AT  } 112,
i.e.,

It is seen that this bound can become conservative if both the number of inputs q and
outputs r of the plant increases. However, the maximum singular value of a random matrix
has very complicated statistics, while the Frobcnious norm is characterized completely in
terms of second-order statistics. This property has enabled the development of statistical
uncertainty bounds based directly on the measured data.

The reader is warned that the use of M, p information to ovcrbound  the interpolation enor
in Lemma 2, can be wildly conservative in practice. This is especially ,true  when applied to
lightly damped systems. A reasonable practical approach is to choose a “good” frequency
grid basccl engineering judgement, and to neglect the interpolation error in the computation
of the uncertainty.
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The restriction of having to know the lloisc filters W(z-l  ) has bmn relaxed compared to
cxmlicr  treatments. This comes at a cost of having to choose a sufficiently large input period
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